Predictive Machine Learning models to estimate the price of gold [Modelos predictivos de Machine Learning para estimar el precio del oro]

Authors

  • Joela Noemi Sotelo Cenas Facultad de Ingeniería, Universidad Nacional de Trujillo, Peru https://orcid.org/0009-0000-3731-3383
  • Helin Julissa Gervacio Arteaga Facultad de Ingeniería, Universidad Nacional de Trujillo, Peru
  • Carmen Lizeth Carranza Rios Facultad de Ingeniería, Universidad Nacional de Trujillo, Peru

DOI:

https://doi.org/10.32829/sej.v8i1.204

Keywords:

Regression models; Gold price; Gradient boosting; Random Forest.

Abstract

The purpose of this study was to determine the optimal algorithm to estimate the price of gold and identify the variables most incident to its variation. An exploratory level methodology, quantitative approach and non-experimental design was used. The results obtained when performing EDA show that the variables with the highest correlation with respect to the price of gold are the cost of production with 44% and the S&P_500 with 30%. When validating the models, the result was that the Gradient boosting algorithm has an optimal R2 of 99.4%, this value justifies the importance of the model in order to estimate the price of gold. Likewise, without leaving aside the Random Forest algorithm, it also shows an R2 of 99.3%. Likewise, it was identified that the variables with the highest incidence are Cost_prod with 51.5% and USD_X with 30.4%. Finally, it is concluded that the use of these algorithms such as Gradient boosting and Random Forest can estimate the price of gold taking into account the variables that affect its variation.

Downloads

Download data is not yet available.

References

Bakker A., Boels, L., Dooren W., Drijvers P. (2019). Conceptual difficulties when interpreting histograms: A review. Educational Research Review, 28. https://doi.org/10.1016/j.edurev.2019.100291 DOI: https://doi.org/10.1016/j.edurev.2019.100291

Cánovas F., Alonso F., Gomariz F., & Oñate F. (2018). Modification of the random forest algorithm to avoid statistical dependence problems when classifying remote sensing imagery. Computers & Geosciences, 103, 1-11. https://doi.org/10.1016/j.cageo.2017.02.012 DOI: https://doi.org/10.1016/j.cageo.2017.02.012

Campillo J. Martínez Julián & Carmona Pedro. (2018). Análisis de la utilidad del algoritmo Gradient Boosting Machine (GBM) en la predicción del fracaso empresarial. Spanish Journal of Finance and Accounting / Revista Española de Financiación y Contabilidad, 47, 1-26. doi.org/10.1080/02102412.2018.1442039 DOI: https://doi.org/10.1080/02102412.2018.1442039

Castillo O. (2022). Desarrollo de modelos predictivos de regresión en la industria minera mediante el uso de algoritmo de machine Learning. https://orcid.org/0000-0001-6996-923x.

Cohen G., & Aiche A. (2023). Forecasting gold price using machine learning methodologies. Chaos, Solitons & Fractals, 175. https://doi.org/10.1016/j.chaos.2023.114079 DOI: https://doi.org/10.1016/j.chaos.2023.114079

Courtney M. (2021). Exploratory Data Analysis in Schools: A Logic Model to Guide Implementation. Internatioal Journal of Education Policy & Leadership, 17(4). https://doi.org/10.22230/ijepl.2021v17n4a1041 DOI: https://doi.org/10.22230/ijepl.2021v17n4a1041

Diaz H., Ramírez S., & Salazar F. (2020). Los determinantes de las variaciones en el rendimiento del oro. La revisión por pares es responsabilidad. 65(2), 1-28. http://dx.doi.org/10.22201/fca.24488410e.2018.1973 DOI: https://doi.org/10.22201/fca.24488410e.2018.1973

Espinosa Z & Javier J. (2020). Aplicación de algoritmos Random Forest y XGBoost en una base de solicitudes de tarjetas de crédito. Ingeniería, investigación y tecnología, 21(3), 00002. https://doi.org/10.22201/fi.25940732e.2020.21.3.022 DOI: https://doi.org/10.22201/fi.25940732e.2020.21.3.022

Espinoza S. (2020). Predicción de postulantes que cometerán fraude interno con Algoritmo de aprendizaje supervisado.

Ghule & Gadhave (2022). Gold Price Prediction using Machine Learning. International Journal of Scientific Research in Engineering and Management (IJSREM), 06. DOI: 10.55041/IJSREM15027. DOI: https://doi.org/10.55041/IJSREM15027

González R. S. L., Gómez I., Pastrana J. L., & Hernández A. (2018). Algoritmos de clasificación y redes neuronales en la observación automática de registros. Cuadernos de Psicología del Deporte, 15(1), 31-40. https://dx.doi.org/10.4321/S1578-84232015000100003 DOI: https://doi.org/10.4321/S1578-84232015000100003

Gulandi S., & Toscani G. (2018). Human behavior and lognormal distribution. A kinetic description. Department of Mathematics of the University of Pavia and IMATI CNR, Italy. Vol. 1.

Khani M., Vahidnia S., Abbasi A. (2021). A Deep Learning-Based Method for Forecasting Gold Price with Respect to Pandemics. SN Computer Science. https://doi.org/10.1007/s42979-021-00724-3. DOI: https://doi.org/10.21203/rs.3.rs-111705/v3

Liang Y., Lin Y., & Lu Q. (2022). Forecasting gold price using a novel hybrid model with ICEEMDAN and LSTM-CNN-CBAM. Expert Systems with Applications, 15. https://doi.org/10.1016/j.eswa.2022.117847. DOI: https://doi.org/10.1016/j.eswa.2022.117847

Makala D., & Li Z. (2021). Prediction of gold price with ARIMA and SVM. Journal of Physics: Conference Series. doi:10.1088/1742-6596/1767/1/012022. DOI: https://doi.org/10.1088/1742-6596/1767/1/012022

Nicodemo C., & Satorra A. (2022). Exploratory data analysis on large data sets: The example of salary variation in Spanish Social Security Data. Article Reuse Guidelines, 25. https://doi.org/10.1177/2340944420957335. DOI: https://doi.org/10.1177/2340944420957335

Ochoa L. (2020). Evaluation of Classification Algorithms using Cross Validation. LACCEI International Multi-Conference for Engineering, Education, and Technology. http://dx.doi.org/10.18687/LACCEI2019.1.1.471. DOI: https://doi.org/10.18687/LACCEI2019.1.1.471

Reales Chacón L., Robalino Morales G. E., Peñafiel Luna A. C., Cárdenas Medina J. H., Cantuña-Vallejo P. F. (2022). El Muestreo Intencional No Probabilístico como herramienta de la investigación científica en carreras de Ciencias de la Salud. Revista Universidad y Sociedad, 14(S5), 681-691. https://orcid.org/0000-0002-4242-3429.

Rodríguez A. (2021). Implementation of Artificial Intelligence algorithms in the prediction of new knowledge through constructivist teaching. Vol. 14(No. 3). doi: https://orcid.org/0000-0002-1238-0106.

Sadorsky P. (2021). Predicting Gold and Silver Price Direction Using Tree-Based Classifiers. Journal of risk and financial management, 14(5). https://doi.org/10.3390/jrfm14050198. DOI: https://doi.org/10.3390/jrfm14050198

Sandoval L. (2019). Machine Learning algorithms for analysis and data prediction. 2017 IEEE 37th Central America and Panama Convention (Concapan xxxvii), 1-5. Managua, Nicaragua. IEEE. http://doi.org/10.1109/Concapan.2017.8278511. DOI: https://doi.org/10.1109/CONCAPAN.2017.8278511

Sević J., & Stakić A. (2022). Prediction of gold price movement considering the number of infected with the covid 19. The European journal of applied economics, 19(2). DOI: DOI 10.5937/EJAE19-39258. DOI: https://doi.org/10.5937/EJAE19-39258

Talavera F. J. (2020). Fundamentos Metodológicos de la Investigación: El Génesis del Nuevo Conocimiento. vol. 5(núm. 16). doi: https://doi.org/10.29394/Scientific.issn.2542-2987.2020.5.16.5.99-119 DOI: https://doi.org/10.29394/Scientific.issn.2542-2987.2020.5.16.5.99-119

Tebin J. y James A. (2022). Gold Price Prediction using Machine Learning. Proceedings of the National Conference on Emerging Computer Applications (NCECA), 4. DOI: 10.5281/zenodo.6874188.

Villada F. (2018). Artificial Neural Networks applied to the Prediction of the Gold Price. vol.27(no.5). doi: http://dx.doi.org/10.4067/S0718-07642016000500016 DOI: https://doi.org/10.4067/S0718-07642016000500016

Wagh A., Shetty S., Soman A., Maste D. (2022). Gold Price Prediction System. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 45(98). https://doi.org/10.22214/ijraset.2022.41623. DOI: https://doi.org/10.22214/ijraset.2022.41623

Zúñiga P. I. (2019). Metodología de la investigación científica: guía práctica. Vol. 7 Núm. 4(Núm. 4). doi: https://orcid.org/0009-0001-9418-8707

204 SEj Sotelo

Downloads

Published

10-03-2024

How to Cite

Sotelo Cenas, J. N. ., Gervacio Arteaga, H. J. ., & Carranza Rios, C. L. . (2024). Predictive Machine Learning models to estimate the price of gold [Modelos predictivos de Machine Learning para estimar el precio del oro]. Journal of Sciences and Engineering, 8(1), 6–19. https://doi.org/10.32829/sej.v8i1.204