Thermal stability of water fibers: effect of the alkaline treatment - aminopropyltrimetoxysilane [Estabilidad termica de fibras de aguaje: efecto del tratamiento alcalino – aminopropiltrimetoxysilano]

Authors

  • César Pol Arévalo Aranda Escuela de Ingeniería Metalúrgica, Universidad Nacional de Trujillo
  • David Alejandro Manya Cueva Escuela de Ingeniería de Materiales, Universidad Nacional de Trujillo
  • Víctor Raúl Wong Frontado Escuela de Ingeniería de Materiales, Universidad Nacional de Trujillo
  • Aldo Roger Castillo Chung Escuela de Ingeniería Metalúrgica, Universidad Nacional de Trujillo
  • Hans Roger Portilla Rodriguez Escuela de Ingeniería Metalúrgica, Universidad Nacional de Trujillo
  • Juan Antonio Vega González Escuela de Ingeniería Metalúrgica, Universidad Nacional de Trujillo
  • Alexander Yushepy Vega Anticona Escuela de Ingeniería de Materiales, Universidad Nacional de Trujillo

Keywords:

Aguaje fibers, Coupling agent, Alkaline treatment

Abstract

The present research evaluated the influence of the concentration of sodium hydroxide and aminopropyltrimethoxysilane on the thermal stability of the aguaje fibers. The fibers were extracted by manual immersion in water and subsequent separation by manual pressure. The NaOH concentrations were 5%, 10% and 15% w / v; while in the case of the silane coupling agent they were 1% and 1.5% v / v. The chemically treated fibers together with the control samples were subjected to thermogravimetric analysis evaluation, in addition, the variation of the humidity percentage, the chemical variation of the main functional groups of the fibers and the surface physical changes of the fibers were determined in a complementary way. The mercerization - silanization treatments increase the thermal degradation temperature of the aguaje fibers, in the conditions tested this increase was 3.89% in the best of cases (5% NaOH + 1.0 Silane). Regarding untreated fibers, mercerization - silanization treatments decrease the percentage of lost mass or degradation, in the best of cases this decrease in mass percentage was 26.85% (15% NaOH + 1.5 Silane), compared to fibers without treatment. Finally, mercerization-silanization treatments increase the percentages of cellulose present in the aguaje fibers evaluated, while the amount of extractives and lignin decrease, under the chemical treatment conditions carried out in the present research.

Downloads

Download data is not yet available.

References

Bachtiar, D., Sapuan, SM, Hamdan, MM. 2008. The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Materials & Design. 29. 1285-1290. 10.1016/j.matdes.2007.09.006.

Corrales, F. 2002.Modificació de fibres de jute per l’elaboració de plástics reforcats. Universidad Politecnica de Cataluña, Cataluña-España.

De Rosa, Igor, Kenny, Jose Mohd. Maniruzzaman, Md. Moniruzzaman, Marco Monti, Debora Puglia, Carlo Santulli, Fabrizio Sarasini. 2011, Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres, Composites Science and Technology, Volume 71, Issue 2.

Dinwoodie, J. 2000, Timber: its nature and behaviour. E & FN Spon, 2, 46-58.

Flores, N. 2011. Efecto del tratamiento quimico en las propiedades fisicas y mecanicas de las fibras de musa paradisiaca L para refuerzos en composites. Guayaquil, Ecuador: Epsol.

Hashim, Yussni; Nazrul, Roslan; Azriszul, Amin; Ahmad, Mujahid. 2012, Mercerization Treatment Parameter Effect on Natural Fiber Reinforced Polymer Matrix Composite: A Brief Review. World Academy of Science, 68.

Jianqiao, W., Boxiong, S., Dongrui, K. 2018. Investigate the interactions between biomass components during pyrolysis using in-situ DRIFTS and TGA. Chemical Engineering Science - ElSevier. doi:https://doi.org/10.1016/j.ces.2018.10.023

Joshi , S., Drzal , L., Mohanty, A., Arora , S. 2004. Are natural FIber composites environmentally superior to glass fiber reinforced composites?. Compos Part A(35), 371–376. 10.1016/j.compositesa.2003.09.016.

Koichi, G., Sreekala, M., Gomes, A., Takeshi, K., Junji, O. 2006. Improvement of plant based natural fibers for toughening green composites—Effect of load application during mercerization of ramie fibers. Composites - ElSevier, 2213– 2220

Kommula, V P, Obi Reddy, K., Shukla, Mukul, Marwala, Tshilidzi, Reddy, E., Rajulu, A. 2015. Extraction, Modification, and Characterization of Natural Ligno-Cellulosic Fiber Strands From Napier Grass. International Journal of Polymer Analysis and Characterization. 21. 150911084612000. 10.1080/1023666X.2015.1089650.

Li, X., Tabil, L., Panigrahi, S. 2007. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. Journal of Polymers and the Environment. 15. 25-33. 10.1007/s10924-006-0042-3.

Merlini, C., Soldi, V., Barra, G. 2011. Influence of fiber surface treatment and length on physico-chemical properties of short random banana fiber-reinforced castor oil polyurethane composites. Polymer Testing - POLYM TEST. 30. 833-840. 10.1016/j.polymertesting.2011.08.008.

Monteiro, S., Calado, V., Sanchez Rodriguez, R., Margem, F. 2012. Thermogravimetric Stability of Polymer Composites Reinforced with Less Common Lignocellulosic Fibers – an Overview. Journal of Materials Research and Technology. 1. 117-126. 10.1016/S2238-7854(12)70021-2.

Nisini, E., Santulli, C., Liverani, A. 2016. Mechanical and impact characterization of hybrid composite laminates with carbon, basalt and flax fibres. Composites Part B: Engineering. 127. 10.1016/j.compositesb.2016.06.071.

Ramesh, M. 2018. Flax (Linum usitatissimum L.) fibre reinforced polymer composite materials: A review on preparation, properties and prospects. Progress in Materials Science. 102. 10.1016/j.pmatsci.2018.12.004.

Ridzuan, MJ., Abdul Majid, M.S., Afendi, M., Kanafiah, A., Zahri, J.M., Gibson, A.G. 2016. Characterisation of natural cellulosic fibre from Pennisetum purpureum stem as potential reinforcement of polymer composites. Materials and Design. 89. 839-847. 10.1016/j.matdes.2015.10.052.

Shanmugasundaram, N. 2018. Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composite.

Sinha, Agnivesh & Narang, Harendra & Bhattacharya, S. 2017. Effect of Alkali Treatment on Surface Morphology of Abaca Fibre. Materials Today: Proceedings. 4. 8993-8996. 10.1016/j.matpr.2017.07.251.

Wambua, P., Ivens, J., Verpoest, I. 2003. Natural fibres: Can they replace glass in fibre reinforced plastics? Composites Science and Technology. 63. 1259-1264. 10.1016/S0266-3538(03)00096-4.

Zhou, F., Cheng, G., Jiang, B. 2014. Effect of silane treatment on microstructure of sisal fibers. Applied Surface Science. 292. 10.1016/j.apsusc.2013.12.054.

Downloads

Published

06-12-2020

How to Cite

Arévalo Aranda, C. P. ., Manya Cueva , D. A., Wong Frontado, V. R. . ., Castillo Chung, A. R. ., Portilla Rodriguez, H. R., Vega González , J. A. ., & Vega Anticona, A. Y. . (2020). Thermal stability of water fibers: effect of the alkaline treatment - aminopropyltrimetoxysilane [Estabilidad termica de fibras de aguaje: efecto del tratamiento alcalino – aminopropiltrimetoxysilano]. Journal of Sciences and Engineering, 4(2), 44–56. Retrieved from https://journals.cincader.org/index.php/sej/article/view/123

Most read articles by the same author(s)