Kinetic study of a commercial lipase for hydrolysis of semi-refined oil of anchovy (Engraulis ringens) [Estudio cinético de una lipasa comercial para la hidrólisis de aceite semirrefinado de anchoa (Engraulis ringens)]

Authors

  • Greissy Stefhany Encinas Estrada Universidad Nacional del Santa, Peru
  • Augusto Castillo Calderón Universidad Nacional del Santa, Peru

DOI:

https://doi.org/10.32829/nanoj.v5i1.146

Keywords:

Anchovy oil; lipase; hydrolysis

Abstract

Lipases due to their ecological nature and catalytic versatility, are ideal for their application in the fish oil hydrolysis industry due to their selective property, which allows the preservation of polyunsaturated fatty acids (PUFAs) in the lipid structure. The objective of this research was to determine the activity and kinetic parameters of a commercial AY AMANO "30SD" lipase, as well as the temperature and time values ​​to achieve an optimal degree of hydrolysis in semi-refined anchovy oil. The experiments were carried out in a jacketed minireactor with a working volume of 400 mL (oil-water-enzyme) with temperature control and pH 7.00, enzyme concentration 350 U/mL and stirring 160 rpm. A 3x3 factorial design and the response surface methodology were used. The results obtained from the study of the enzyme were: activity = 37 384.55 ± 395.07 U/g and kinetic parameters: Km = 7.98 g/L and Vmax. = 0.038887 g/Lxmin. Correspondingly, the following optimal parameters were obtained: Degree of hydrolysis 4.01%, temperature 46.86 °C and hydrolysis time 90 minutes, with a confidence level of 95% (p <0.05). Conclusions: The study allowed us to kinetically characterize the commercial lipase and determine the optimum degree of hydrolysis of the semi-refined anchovy oil.

Downloads

Download data is not yet available.

References

Aarthy, M., Saravanan, P., Ayyadurai, N., Gowthaman, M. K., & Kamini, N. R. 2016. A two step process for production of omega 3-polyunsaturated fatty acid concentrates from sardine oil using Cryptococcus sp. MTCC 5455 lipase. Journal of Molecular Catalysis B: Enzymatic, 125, 25-33. doi:10.1016/j.molcatb.2015.12.013

AMANO ENZYME. 2019. Technical Data Sheet Lipase AY "Amano" 30SD.

Benjamin, S., & Pandey, A. 1998. Candida rugosa lipases: molecular biology and versatility in biotechnology. Yeast, 1069-87. doi:10.1002/(SICI)1097-0061(19980915)14:12<1069::AID-YEA303>3.0.CO;2-K

Bhandari, K., Chaurasia, P., & Singh, K. 2017. Kinetics of enzymatic hydrolysis of Indian tuna fish oil using Candida rugosa lipase. Science Direct, 413-418. doi:nopr.niscair.res.in/handle/123456789/43328

Bonilla-Méndez, J. R., & Hoyos-Concha, J. L. 2018. Methods of extraction, refining and concentration of fish oil as a source of omega-3 fatty acids. Ciencia & Tecnología Agropecuaria, 621-644. doi:10.21930/rcta.vol19_num2_art:684

Camacho Tarsis, C. C. 2014. DIFERENTES MÉTODOS PARA CUANTIFICAR LA ACTIVIDAD ENZIMÁTICA EN HIDROLASAS DE IMPORTANCIA COMERCIAL. Ambato, Ecuador.

Cerón, I. X., Cardona, C. A., & Toro, L. A. (2012). Simulación del proceso de concentración de aceite esencial de cidrón (Lippia citriodora) por destilación molecular de película descendente. Ingeniería y Competitividad, 107-120. http://hdl.handle.net/10893/5497

Coca, Janny, Hernandez, Odette, Berrio, Rachel, Martínez, Sonia, Díaz, Ernesto, & Dustet, Julio C. 2001. Producción y caracterización de las lipasas de Aspergillus niger y A. fumigatus. Biotecnología Aplicada, 216-220. https://elfosscientiae.cigb.edu.cu/PDFs/Biotecnol%20Apl/2001/18/4/216-220_lipasasfinal.pdf

Correa, C., Tejeda, A., Martín, A. R., García, H. S., & Noriega, J. A. 2017. Cinética de esterificación enzimática de ácidos grasos poliinsaturados N-3 a glicerol: mecanismo ping-pong multi-sustrato multi-producto. Revista Mexicana de Ingeniería Química, 17-28. https://www.redalyc.org/articulo.oa?id=62053304010

Diestra Balta, J., Margarito Aguilar, L., Vega Paulino, R., & Castillo Calderón, A. 2015. Modelación matemática del efecto de la temperatura en la actividad y la estabilidad térmica de la inulinasa de Kluyveromyces marxianus NRRL Y-7571. Scientia Agropecuaria, 303-312. doi:10.17268/sci.agropecu.2015.04.07

Dillon, J. T., Aponte, J. C., Tarozo, R. , & Huang, Y. 2013. Purification of omega-3 polyunsaturated fatty acids from fish oil using silverthiolate chromatographic material and high performance liquid chromatography. Journal of Chromatography A, 1312, 18-25. doi:10.1016/j.chroma.2013.08.064

Dobrev, G., Zhekova, B., Nedelcheva, P., Chochkov, R., & Krastanov, A. 2011. Characterization of Crude Lipase fron Rhizopus Arrhizusand Purification of Multiplicity Forms of the enzyme. Biotechnology & Biotechnological, 2295-2300. doi:10.5504/BBEQ.2011.0003

Fernández-Jerí, Yadira, Zavaleta, Amparo I., Paredes, Luis A., & Izaguirre, Victor. 2013. CARACTERIZACIÓN PARCIAL DE UNA LIPASA EXTRACELULAR DE Marinobacter sp. EMPLEANDO LA METODOLOGÍA DE SUPERFICIE RESPUESTA. Ciencia e Investigación, 12-17. doi:10.15381/ci.v16i1.8630

Gámez, N., Noriega, J. A., Medina, L. A., Ortega, J., Monroy, J., Toro, F. J., . . . Angulo, O. 2003. Concentration of eicosapentaenoic acid and docosahexaenoic acid from fish oil by hydrolysis and urea complexation. Food Research International, 36(7), 721-727. doi:10.1016/S0963-9969(03)00052-8

Gentili, A., Curini, R., Cernia, E., & D' Ascenzo, G. 1996. Thermal stability and activity of Candida cylindracea lipase. 43-49. doi:10.1016/S1381-1177(96)00042-2

Hamed, H., Mohammad, G., & Seid, J. 2018. Investigating the effect of lipase from Candida rugosa on the production of EPA and DHA concentrates from Kilka fish (Clupeonella cultiventris caspia). Food Sciencie and Technology. doi:10.1016/j.lwt.2018.03.066

Kahveci, D., & Xu, X. 2011. Repeated hydrolysis process is effective for enrichment of omega 3 polyunsaturated fatty acids in salmon oil by Candida rugosa lipase. Food Chemistry, 129(4), 1552-1558. doi:10.1016/j.foodchem.2011.05.142

Lineweaver, H., & Burk, D. 1934. The Determination of Enzyme Dissociation Constants. Journal of American Chemical Society, 56, 568. doi:doi.org/10.1021/ja01318a036

Lopez, H. L. 2016. Omega-3 en forma de triglicérido natural versus ester etílico sintético. https://www.nordicnaturals.com/ConstantContact/thanks/rTGvsEEsp.pdf

Martínez-Corona, R., Cortes-Penagos, C., Madrigal-Pérez, L. A., & Gonzáles-Hernández, J. 2019. Hongos y Levaduras: Fábricas de lipasas. INTERCIENCIA, 378-385. https://www.redalyc.org/journal/339/33960285002/html/

Miranda, K., Baeza, R., Noriega, J., García, H., & Otero C. 2013. Optimization of structured diacylglycerols production containing ω-3 fatty acids via enzyme-catalysed glycerolysis of fish oil. European Food Research and Technology, 236(3), 435-440. doi:10.1007/s00217-012-1889-2

Mohd Hussin, F. N. N., Attan, N., & Wahab, R. A. 2020. Taguchi design-assisted immobilization of Candida rugosa lipase onto a ternary alginate/nanocellulose/montmorillonite composite: Physicochemical characterization, thermal stability and reusability studies. Enzyme and Microbial Technology, 136. doi:10.1016/j.enzmictec.2019.109506

Nagachinta, S., & Akoh, C. C. w.d.. Enrichment of palm olein with long chain polyunsaturated fatty acids by enzymatic acidolysis. LWT - Food Science and Technology, 46(1), 29–35. doi:doi:10.1016/j.lwt.2011.10.027

Quian, C., Hart, B., & Colombo, S. M. 2020. Re-evaluating the dietary requirement of EPA and DHA for Atlantic salmon in freshwater. Aquaculture, 518. doi:10.1016/j.aquaculture.2019.734870

Sahena, F., Zaidul, I. S. M., Jinap, S., Saari, N., Jahurul, H. A., Abbas, K. A., & Norulaini, A. A. 2009. PUFAs in Fish: Extraction, Fractionation, Importance in Health. Comprehensive Reviews in Food Science and Food Safety, 8(2), 59-74. doi:10.1111/j.1541-4337.2009.00069.x

Sharma, A., Chaurasia, S. P., & Dalai, A. K. 2013. Enzymatic hydrolysis of cod liver oil for the fatty acids production. Catalysis Today, 93-100. doi:10.1016/j.cattod.2012.05.006

Solaesa, Á. G., Sanz, M. T., Falkeborg, M., Beltrán, S., & Guo, Z. 2016. Production and concentration of monoacylglycerols rich in omega-3 polyunsaturated fatty acids by enzymatic glycerolysis and molecular distillation. Food Chemistry, 190, 960-967. doi:10.1016/j.foodchem.2015.06.061

Tena, N., Lobo-Prieto, A., Aparicio, R., & García-Gonzáles, D. L. 2018. Storage and Preservation of Fats and Oils. Reference Module in Food Science. doi:10.1016/B978-0-08-100596-5.22268-3

Valenzuela B, A., Sanhueza C, J., & de la Barra D Fernando. 2012. EL ACEITE DE PESCADO: AYER UN DESECHO INDUSTRIAL, HOY UN PRODUCTO DE ALTO VALOR NUTRICIONAL. Revista chilena de nutrición, 201-209. doi:10.4067/S0717-75182012000200009

Valverde, L. M., Moreno, P. A. G., Cerdán, L. E., López, E. N., López, B. C., & Medina, A. R. 2014. Concentration of docosahexaenoic and eicosapentaenoic acids by enzymatic alcoholysis with different acyl-acceptors. Biochemical Engineering Journal, 91, 163-173. doi:10.1016/j.bej.2014.08.010

Wanasundara, U., & Shahidi, F. 1998. Concentration of ω-3 Polyunsaturated Fatty Acids of Marine Oils Using Candida cylindracea Lipase: Optimization of Reaction Conditions. Science Direct, 1768-1774. doi:10.1007/s11746-998-0330-2

146

Downloads

Published

11-11-2021

How to Cite

Encinas Estrada, G. S., & Castillo Calderón, A. (2021). Kinetic study of a commercial lipase for hydrolysis of semi-refined oil of anchovy (Engraulis ringens) [Estudio cinético de una lipasa comercial para la hidrólisis de aceite semirrefinado de anchoa (Engraulis ringens)]. Journal of Nanotechnology, 5(1), 9–22. https://doi.org/10.32829/nanoj.v5i1.146