Multivariable predictive models for the estimation of power consumption (kW) of a Semi-autogenous mill applying Machine Learning algorithms [Modelos predictivos multivariables para la estimación de consumo de potencia (kW) de un molino Semi - autógeno aplicando algoritmos de Machine Learning]
DOI:
https://doi.org/10.32829/eesj.v8i1.207Keywords:
Machine Learning, Semi-autogenous mill, power (kW).Abstract
This research aimed to develop machine learning (ML) models to estimate power consumption (Kw) in a Semi-autogenous mill in the mining industry. Using Machine Learning algorithms considering various operating variables for the different models such as Multiple Linear Regression (RLM), Decision Tree Regression (RAD), Random Forest Regression (RBA) and Regression Artificial Neural Networks (ANN). The methodology adopted was applied, with an experimental design with a descriptive and transversal approach. The results of the application of these models revealed significant differences in terms of predictive efficiency. The RLM and RRNA stood out with coefficients of determination (R²) of 0.922 and 0.939, respectively, indicating a substantial capacity to explain the variability in power consumption. In contrast, the tree-based models (RAD and RBA) showed inferior performance, with R² of 0.762 and 0.471. When analyzing key metrics such as Mean Absolute Error (MAE), Mean Square Error (MSE) and Root Root Mean Square Error (RMSE), it was confirmed that both RLM and RRNA outperformed the tree-based models. These results support the choice of RLM and RRNA as preferred models for estimating power consumption in a Semi-autogenous mill.
Downloads
References
Castro P. P., & Valenzuela M. A. (2022). Robust estimation and protection of locked charge in grinding mills. In 2015 IEEE Industry Applications Society Annual Meeting (pp. 1-11). IEEE. DOI: 10.1109/TIA.2017.2654998 DOI: https://doi.org/10.1109/IAS.2015.7356908
Codelco Chile. (2019). MOLIENDA. Codelco Educa. https://www.codelcoeduca.cl/codelcoeduca/site/artic/20190109/asocfile/20190109005343/molienda_media_t__cnico_060119.pdf
Fu, Y., & Aldrich, C. (2020). Deep learning in mining and mineral processing operations: a review. IFAC-PapersOnLine, 53(2), 11920-11925. https://doi.org/10.1016/j.ifacol.2020.12.712 DOI: https://doi.org/10.1016/j.ifacol.2020.12.712
Ghasemi Z., Neumann F., Zanin M., Karageorgos J., & Chen L. (2024). A comparative study of prediction methods for semi-autogenous grinding mill throughput. Minerals Engineering, 205, 108458. https://doi.org/10.1016/j.mineng.2023.108458 DOI: https://doi.org/10.1016/j.mineng.2023.108458
Heredia Tejada H. J. (2016). Simulación y obtención de parámetros óptimos para la optimización de los revestimientos del Molino SAG 36 ft x 26.6 ft de la Minera Constancia–Hudbay. URI http://repositorio.unsa.edu.pe/handle/UNSA/1902
Hoseinzade Z., Mokhtari A. R., & Zekri H. (2023). Clay Minerals Characterization of the Miduk Ball Mill Output through Spectral Analysis. Ore Geology Reviews, 105629. https://doi.org/10.1016/j.oregeorev.2023.105629 DOI: https://doi.org/10.1016/j.oregeorev.2023.105629
Howard J., & Gugger S. (2020). Deep Learning for Coders with fastai and PyTorch. O'Reilly Media
Jayasundara C. T., & Zhu H. P. (2022a). Impact energy of particles in ball mills based on DEM simulations and data-driven approach. Powder Technology, 395, 226-234. https://doi.org/10.1016/j.powtec.2021.09.063 DOI: https://doi.org/10.1016/j.powtec.2021.09.063
Jayasundara C. T., & Zhu H. P. (2022b). Predicting liner wear of ball mills using discrete element method and artificial neural network. Chemical Engineering Research and Design, 182, 438-447. https://doi.org/10.1016/j.cherd.2022.04.013 DOI: https://doi.org/10.1016/j.cherd.2022.04.013
Jooshaki M., Nad A., & Michaux S. (2021). A systematic review on the application of machine learning in exploiting mineralogical data in mining and mineral industry. Minerals, 11(8), 816. https://doi.org/10.3390/min11080816 DOI: https://doi.org/10.3390/min11080816
Jung D., & Choi Y. (2021). Systematic review of machine learning applications in mining: Exploration, exploitation, and reclamation. Minerals, 11(2), 148. https://doi.org/10.3390/min11020148 DOI: https://doi.org/10.3390/min11020148
Khalifa R. M., Yacout S., & Bassetto S. (2021). Developing machine-learning regression model with Logical Analysis of Data (LAD). Computers & Industrial Engineering, 151, 106947. https://doi.org/10.1016/j.cie.2020.106947 DOI: https://doi.org/10.1016/j.cie.2020.106947
Loor Cárdenas V. E. (2020). Aplicación de inteligencia artificial para el agendamiento y optimización del diseño de fases en minería a cielo abierto.
López P., Reyes I., Risso N., Aguilera C., Campos P. G., Momayez M., & Contreras D. (2021). Assessing Machine Learning and Deep Learning-based approaches for SAG mill Energy consumption. In 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON) (pp. 1-6). IEEE. DOI: 10.1109/CHILECON54041.2021.9702951 DOI: https://doi.org/10.1109/CHILECON54041.2021.9702951
Loudari C., Cherkaoui M., Bennani R., Harraki I. E., Younsi Z. E., Adnani M. E., Baina K. (2023). Predicting energy consumption of grinding mills in mining industry: A review. In AIP Conference Proceedings (Vol. 2814, No. 1). AIP Publishing. https://doi.org/10.1063/5.0148768 DOI: https://doi.org/10.1063/5.0148768
Toro L. (2023). Como aplicar el Machine Learnig a la educación. OBS Business School
Murphy K. P. (2022). Machine learning: a probabilistic perspective. MIT press.
Peng J., Sun W., Xu J., Zhou G., Xie L., Han H., Li Q. (2023). Analyzing process parameters for industrial grinding circuit based on machine learning method. Advanced Powder Technology, 34(9), 104113. https://doi.org/10.1016/j.apt.2023.104113 DOI: https://doi.org/10.1016/j.apt.2023.104113
Rosas G. A. A. (2021). Modelamiento y Diseño de un Sistema de Control de las Variables Críticas de un Molino Semiautógeno Mediante un Sistema Experto Basado en Control MPC y Lógica Difusa (Doctoral dissertation, Pontificia Universidad Catolica del Peru (Peru)). URI http://hdl.handle.net/20.500.12404/21199
Salazar J. L., Valdés-González H., Vyhmesiter E., & Cubillos F. (2014). Model predictive control of semiautogenous mills (sag). Minerals Engineering, 64, 92-96. https://doi.org/10.1016/j.mineng.2014.03.029 DOI: https://doi.org/10.1016/j.mineng.2014.03.029
Venkata P., Pandya V., & Sant A. V. (2024). Data Mining and SVM Based Fault Diagnostic Analysis in Modern Power System Using Time and Frequency Series Parameters Calculated From Full-Cycle Moving Window. Journal of Operation and Automation in Power Engineering, 12(3), 206-214. DOI: 10.22098/JOAPE.2023.10819.1789
Wills B. A., & Finch J. (2015). Wills' mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Butterworth-Heinemann. https://doi.org/10.1016/C2010-0-65478-2 DOI: https://doi.org/10.1016/C2010-0-65478-2
Zou G., Zhou J., Song T., Yang J., Li K. (2023). Hierarchical intelligent control method for mineral particle size based on machine learning. Minerals, 13(9), 1143. https://doi.org/10.3390/min13091143 DOI: https://doi.org/10.3390/min13091143

Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Energy & Environmental Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.