Prediction of energy consumption in grinding using artificial neural networks to improve the distribution of fragmentation size [Predicción del consumo de energía en la molienda utilizando redes neuronales artificiales para mejorar la distribución del tamaño de la fragmentación]


  • Jaime Yoni Anticona Cueva Facultad de Ingeniería, Universidad Nacional de Trujillo, Peru
  • Jhon Vera Encarnación Facultad de Ingeniería, Universidad Nacional de Trujillo, Peru
  • Tomas Jubencio Anticona Cueva Facultad de Ingeniería, Universidad Nacional de Trujillo, Peru
  • Juan Antonio Vega Gonzáles Facultad de Ingeniería, Universidad Nacional de Trujillo, Peru



Energy consumption; grinding; predictive modelling; RNA.


The study focuses on the prediction of energy consumption in grinding processes using artificial neural networks (ANN). The purpose was to develop a predictive model based on artificial neural networks to estimate energy consumption in grinding and improve the fragmentation size distribution, which is crucial for the efficiency of mining and metallurgical operations. Energy consumption in grinding represents a significant part of operating costs and directly influences the profitability of operations. The ANN was trained from a data set of 126 records, which were divided into 80% for training and 20 % for model testing. The results of this research highlight optimal performance of the predictive model with performance metrics such as Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE) and Correlation Coefficient (R2), with values of 0.78, 1.39, 1.18 and 0.98, respectively in the estimation of energy consumption in the grinding process. Finally, these results indicate that the ANN achieved an accurate prediction of energy consumption in the grinding process, this will allow better baking in energy optimization.


Download data is not yet available.


Abdollahi H., Noaparast M., Ziaedin Shafaei S., Akcil A., Panda S., Hazrati Kashi M., & Karimi P. (2019). Prediction and optimization studies for bioleaching of molybdenite concentrate using artificial neural networks and genetic algorithm. CXXX, 24-35. DOI:

Álvarez Rodríguez B. (2010). Análisis de la influencia de los modelos de distribución de tamaños de partículas en la determinación de consumos energéticos en molienda mediante el método bond. Universidad de Oviedo, España.

Aramendia E., Brockway P., Taylor P., & Norman J. (2024). Exploring the effects of mineral depletion on renewable energy technologies net energy returns,. CCXCI. DOI:

Azizi A., Rooki R., & Mollayi N. (2020). Modeling and prediction of wear rate of grinding media in mineral processing industry using multiple kernel support vector machine. SN Appl. Sci, 2, 1469. DOI:

Balakrishnan V., Pradhan M., & Dhekne P. (2020). Investigating rock fragmentation in distributed spherical air-gap blasting technique. CCCLXII, 101-110. DOI:

Bannoud M., Dias Martins T., & Ferreira dos Santos B. (2022). Control of a closed dry grinding circuit with ball mills using predictive control based on neural networks. V. DOI:

Barrio Gonzales D. (2022). Aplicación del aprendizaje automático en modelos de materia activa. Grado de Ingeniería en Tecnologías Industriales Especialidad de Matemática Industrial, Universidad Politécnica de Madrid, Escuela Tecnica Superior de Ingenieros Industriales, Madrid.

Both C., & Dimitrakopoulos R. (2021). Applied Machine Learning for Geometallurgical Throughput Prediction—A Case Study Using Production Data at the Tropicana Gold Mining Complex. Minerals, 11(11), 1257. DOI:

Cao J., Xia X., Wang L., Zhang Z., & Liu X. (2021). A Novel CNC Milling Energy Consumption Prediction Method Based on Program Parsing and Parallel Neural Network. XII(24). DOI:

Herrera N., Okkonen J., Sinchi Gonzales M., & Mollehuara R. (2023). Soft Computing Application in Mining, Mineral Processing and Metallurgy with an Approach to Using It in Mineral Waste Disposal. XII(11). DOI:

Holmberg K., Kivikytö-Reponen P., Härkisaari P., Valtonen K., & Erdemir A. (2017). Global energy consumption due to friction and wear in the mining industry. CXV, 116-139. DOI:

Kingma D. P., & Ba J. (2015). Adam: A Method for Stochastic Optimization.

Kumar Mohajan H. (2021). Quantitative Research: A Successful Investigation in Natural and Social Sciences. Journal of Economic Development Environment and People, IX(4). DOI:

Little L., Mainza A. N., Becker M., & Wiese J. G. (2016). Using mineralogical and particle shape analysis to investigate enhanced mineral liberation through phase boundary fracture. CCCI, 794-804. DOI:

López P., Reyes I., Risso N., Momayez M., & Zhang J. (2023). Machine Learning Algorithms for Semi-Autogenous Grinding Mill Operational Regions’ Identification. Mineral Processing and Extractive Metallurgy, XIII(11). DOI:

Montesinos López O., Montesinos López A., & Crossa J. (2022). Fundamentals of Artificial Neural Networks and Deep Learning. 379-425. DOI:

Mustafa Taye M. (2023). Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. XII(5), 91. DOI:

Nikolić V., & Trumić M. (2021). A new approach to the calculation of bond work index for finer samples. CLXV. DOI:

Nikolić V., Doll A., & Trumić M. (2022). A new methodology to obtain a corrected Bond ball mill work index valid with non-standard feed size. Minerals Engineering, CLXXXVIII. DOI:

Otsuki A., & Jang H. (2022). Prediction of Particle Size Distribution of Mill Products Using Artificial Neural Networks. ChemEngineering, 6(92), 6. DOI:

Pérez García E., Bouchard J., & Poulin E. (2020a). A mineral liberation distribution estimator for monitoring and process control applications. CCCLXVII, 527-538. DOI:

Pérez García E., Bouchard J., & Poulin É. (2020b). Systematic calibration of a simulated semi-autogenous/ball-mill grinding circuit. IFAC-PapersOnLine, LIII(2), 12026-12031. DOI:

Pouresmaieli M., Ataei M., Nouri Qarahasanlou A., & Barabadi A. (2023). Integration of renewable energy and sustainable development with strategic planning in the mining industry. XX. DOI:

Rojano A., Salazar R., Miranda L., & Ojeda W. (2021). Algoritmo Adam en la inteligencia artificial. COMEII-21005, 101-110.

Saldaña M., Gálvez E., Navarra A., Toro N., & Cisternas L. A. (2023). Optimization of the SAG Grinding Process Using Statistical Analysis and Machine Learning: A Case Study of the Chilean Copper Mining Industry. Materials (Basel), 16(8), 3220. DOI:

Strielkowski W., Civin L., Tarkhanova E., Tvaronaviciencie M., & Petrenko Y. (2021). Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review. MDPI, XIV(24). DOI:

Valerevich V., & Sergeevich L. (2019, March 03). Comparison of the different ways of the ball Bond word index determining. International Journal of Mechanical Engineering and Technology (IJMET), 10, 1180-1194.

Wang C., Deng J., Tao L., Sun W., Xiao Q., & Gao Z. (2022). Enhanced flotation of chalcopyrite particles by grinding with short cylinder media. Minerals Engineering, CLXXXVIII. DOI:

Wang F., Damascene Harindintwali J., Yuan Z., Wang M., Wang F., Li S., Yuhao F. (2021). Technologies and perspectives for achieving carbon neutrality. II(4). DOI:

206 EESj Anticona




How to Cite

Anticona Cueva, J. Y., Vera Encarnación , J., Anticona Cueva, T. J., & Vega Gonzáles, J. A. (2024). Prediction of energy consumption in grinding using artificial neural networks to improve the distribution of fragmentation size [Predicción del consumo de energía en la molienda utilizando redes neuronales artificiales para mejorar la distribución del tamaño de la fragmentación]. Journal of Energy &Amp; Environmental Sciences, 8(1), 1–13.