Prediction of energy consumption in grinding using artificial neural networks to improve the distribution of fragmentation size [Predicción del consumo de energía en la molienda utilizando redes neuronales artificiales para mejorar la distribución del tamaño de la fragmentación]
DOI:
https://doi.org/10.32829/eesj.v8i1.206Keywords:
Energy consumption; grinding; predictive modelling; RNA.Abstract
The study focuses on the prediction of energy consumption in grinding processes using artificial neural networks (ANN). The purpose was to develop a predictive model based on artificial neural networks to estimate energy consumption in grinding and improve the fragmentation size distribution, which is crucial for the efficiency of mining and metallurgical operations. Energy consumption in grinding represents a significant part of operating costs and directly influences the profitability of operations. The ANN was trained from a data set of 126 records, which were divided into 80% for training and 20 % for model testing. The results of this research highlight optimal performance of the predictive model with performance metrics such as Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE) and Correlation Coefficient (R2), with values of 0.78, 1.39, 1.18 and 0.98, respectively in the estimation of energy consumption in the grinding process. Finally, these results indicate that the ANN achieved an accurate prediction of energy consumption in the grinding process, this will allow better baking in energy optimization.
Downloads
References
Abdollahi H., Noaparast M., Ziaedin Shafaei S., Akcil A., Panda S., Hazrati Kashi M., & Karimi P. (2019). Prediction and optimization studies for bioleaching of molybdenite concentrate using artificial neural networks and genetic algorithm. CXXX, 24-35. https://doi.org/10.1016/j.mineng.2018.10.008 DOI: https://doi.org/10.1016/j.mineng.2018.10.008
Álvarez Rodríguez B. (2010). Análisis de la influencia de los modelos de distribución de tamaños de partículas en la determinación de consumos energéticos en molienda mediante el método bond. Universidad de Oviedo, España. https://dialnet.unirioja.es/servlet/tesis?codigo=180857
Aramendia E., Brockway P., Taylor P., & Norman J. (2024). Exploring the effects of mineral depletion on renewable energy technologies net energy returns,. CCXCI. https://doi.org/10.1016/j.energy.2023.130112 DOI: https://doi.org/10.1016/j.energy.2023.130112
Azizi A., Rooki R., & Mollayi N. (2020). Modeling and prediction of wear rate of grinding media in mineral processing industry using multiple kernel support vector machine. SN Appl. Sci, 2, 1469. https://doi.org/https://doi.org/10.1007/s42452-020-03212-0 DOI: https://doi.org/10.1007/s42452-020-03212-0
Balakrishnan V., Pradhan M., & Dhekne P. (2020). Investigating rock fragmentation in distributed spherical air-gap blasting technique. CCCLXII, 101-110. https://doi.org/10.1016/j.powtec.2019.11.110 DOI: https://doi.org/10.1016/j.powtec.2019.11.110
Bannoud M., Dias Martins T., & Ferreira dos Santos B. (2022). Control of a closed dry grinding circuit with ball mills using predictive control based on neural networks. V. https://doi.org/10.1016/j.dche.2022.100064 DOI: https://doi.org/10.1016/j.dche.2022.100064
Barrio Gonzales D. (2022). Aplicación del aprendizaje automático en modelos de materia activa. Grado de Ingeniería en Tecnologías Industriales Especialidad de Matemática Industrial, Universidad Politécnica de Madrid, Escuela Tecnica Superior de Ingenieros Industriales, Madrid.
Both C., & Dimitrakopoulos R. (2021). Applied Machine Learning for Geometallurgical Throughput Prediction—A Case Study Using Production Data at the Tropicana Gold Mining Complex. Minerals, 11(11), 1257. https://doi.org/https://doi.org/10.3390/min11111257 DOI: https://doi.org/10.3390/min11111257
Cao J., Xia X., Wang L., Zhang Z., & Liu X. (2021). A Novel CNC Milling Energy Consumption Prediction Method Based on Program Parsing and Parallel Neural Network. XII(24). https://doi.org/10.3390/su132413918 DOI: https://doi.org/10.3390/su132413918
Herrera N., Okkonen J., Sinchi Gonzales M., & Mollehuara R. (2023). Soft Computing Application in Mining, Mineral Processing and Metallurgy with an Approach to Using It in Mineral Waste Disposal. XII(11). https://doi.org/10.3390/min13111450 DOI: https://doi.org/10.3390/min13111450
Holmberg K., Kivikytö-Reponen P., Härkisaari P., Valtonen K., & Erdemir A. (2017). Global energy consumption due to friction and wear in the mining industry. CXV, 116-139. https://doi.org/10.1016/j.triboint.2017.05.010 DOI: https://doi.org/10.1016/j.triboint.2017.05.010
Kingma D. P., & Ba J. (2015). Adam: A Method for Stochastic Optimization. https://doi.org/10.48550/arXiv.1412.6980
Kumar Mohajan H. (2021). Quantitative Research: A Successful Investigation in Natural and Social Sciences. Journal of Economic Development Environment and People, IX(4). https://doi.org/10.26458/jedep.v9i4.679 DOI: https://doi.org/10.26458/jedep.v9i4.679
Little L., Mainza A. N., Becker M., & Wiese J. G. (2016). Using mineralogical and particle shape analysis to investigate enhanced mineral liberation through phase boundary fracture. CCCI, 794-804. https://doi.org/10.1016/j.powtec.2016.06.052 DOI: https://doi.org/10.1016/j.powtec.2016.06.052
López P., Reyes I., Risso N., Momayez M., & Zhang J. (2023). Machine Learning Algorithms for Semi-Autogenous Grinding Mill Operational Regions’ Identification. Mineral Processing and Extractive Metallurgy, XIII(11). https://doi.org/10.3390/min13111360 DOI: https://doi.org/10.3390/min13111360
Montesinos López O., Montesinos López A., & Crossa J. (2022). Fundamentals of Artificial Neural Networks and Deep Learning. 379-425. https://doi.org/10.1007/978-3-030-89010-0_10 DOI: https://doi.org/10.1007/978-3-030-89010-0_10
Mustafa Taye M. (2023). Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. XII(5), 91. https://doi.org/10.3390/computers12050091 DOI: https://doi.org/10.3390/computers12050091
Nikolić V., & Trumić M. (2021). A new approach to the calculation of bond work index for finer samples. CLXV. https://doi.org/10.1016/j.mineng.2021.106858 DOI: https://doi.org/10.1016/j.mineng.2021.106858
Nikolić V., Doll A., & Trumić M. (2022). A new methodology to obtain a corrected Bond ball mill work index valid with non-standard feed size. Minerals Engineering, CLXXXVIII. https://doi.org/10.1016/j.mineng.2022.107822 DOI: https://doi.org/10.1016/j.mineng.2022.107822
Otsuki A., & Jang H. (2022). Prediction of Particle Size Distribution of Mill Products Using Artificial Neural Networks. ChemEngineering, 6(92), 6. https://doi.org/https://doi.org/10.3390/chemengineering6060092 DOI: https://doi.org/10.3390/chemengineering6060092
Pérez García E., Bouchard J., & Poulin E. (2020a). A mineral liberation distribution estimator for monitoring and process control applications. CCCLXVII, 527-538. https://doi.org/10.1016/j.powtec.2020.04.002 DOI: https://doi.org/10.1016/j.powtec.2020.04.002
Pérez García E., Bouchard J., & Poulin É. (2020b). Systematic calibration of a simulated semi-autogenous/ball-mill grinding circuit. IFAC-PapersOnLine, LIII(2), 12026-12031. https://doi.org/0.1016/j.ifacol.2020.12.737 DOI: https://doi.org/10.1016/j.ifacol.2020.12.737
Pouresmaieli M., Ataei M., Nouri Qarahasanlou A., & Barabadi A. (2023). Integration of renewable energy and sustainable development with strategic planning in the mining industry. XX. https://doi.org/10.1016/j.rineng.2023.101412 DOI: https://doi.org/10.1016/j.rineng.2023.101412
Rojano A., Salazar R., Miranda L., & Ojeda W. (2021). Algoritmo Adam en la inteligencia artificial. COMEII-21005, 101-110.
Saldaña M., Gálvez E., Navarra A., Toro N., & Cisternas L. A. (2023). Optimization of the SAG Grinding Process Using Statistical Analysis and Machine Learning: A Case Study of the Chilean Copper Mining Industry. Materials (Basel), 16(8), 3220. https://doi.org/https://doi.org/10.3390/ma16083220 DOI: https://doi.org/10.3390/ma16083220
Strielkowski W., Civin L., Tarkhanova E., Tvaronaviciencie M., & Petrenko Y. (2021). Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review. MDPI, XIV(24). https://doi.org/10.3390/en14248240 DOI: https://doi.org/10.3390/en14248240
Valerevich V., & Sergeevich L. (2019, March 03). Comparison of the different ways of the ball Bond word index determining. International Journal of Mechanical Engineering and Technology (IJMET), 10, 1180-1194. http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=10&IType=3
Wang C., Deng J., Tao L., Sun W., Xiao Q., & Gao Z. (2022). Enhanced flotation of chalcopyrite particles by grinding with short cylinder media. Minerals Engineering, CLXXXVIII. https://doi.org/10.1016/j.mineng.2022.107827 DOI: https://doi.org/10.1016/j.mineng.2022.107827
Wang F., Damascene Harindintwali J., Yuan Z., Wang M., Wang F., Li S., Yuhao F. (2021). Technologies and perspectives for achieving carbon neutrality. II(4). https://doi.org/10.1016/j.xinn.2021.100180 DOI: https://doi.org/10.1016/j.xinn.2021.100180

Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Energy & Environmental Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.