Influence Modeling and optimization of sulphide removal by catalytic oxidation of tannery fur effluents [Modelamiento y optimización de la remoción de sulfuros por oxidación catalítica de efluentes de pelambre de curtiduría]

Authors

  • Jorge Luis Mendoza Bobadilla Laboratorio de Investigación en Aguas, Ingeniería Ambiental, Universidad Nacional de Trujillo
  • Adolfo Enrique Guerrero Escobedo Laboratorio de Investigación en Físicoquímica, Ingeniería Química, Universidad Nacional de Trujillo
  • Walter Moreno Eustaquio Laboratorio de Investigación en Residuos Peligrosos, Ingeniería Ambiental, Universidad Nacional de Trujillo
  • Marina Ponce Zavaleta Laboratorio de Investigación en Aguas, Ingeniería Ambiental, Universidad Nacional de Trujillo
  • Luisa Carbajo Arteaga Laboratorio de Investigación en Aguas, Ingeniería Ambiental, Universidad Nacional de Trujillo

DOI:

https://doi.org/10.32829/eesj.v5i1.126

Keywords:

Waste effluent, pelt, tannery, catalyst, removal.

Abstract

The residual effluents from the fur stage of the bovine leather tannery industry are characterized by having a high concentration of sulfides. The objective of this study was to evaluate the effects of aeration time and pH in the residual effluents of the leather stage of the tannery, with the catalysts MnO2 and MnSO4 separately; as well as, determine adjustment models through the response surface methodology and the optimal intervals of the best conditions that lead to a higher percentage of sulfide removal. For this reason, the sulphide removal percentage was evaluated from samples extracted from the pellet stage, by means of catalytic oxidation treatments; varying the catalyst, pH and aeration time. The catalysts used were manganese dioxide (MnO2) and manganese sulfate (MnSO4) and for each catalyst the pH was varied in the values ​​of 8.5; 9.5; 10.2 and 13.4; likewise, the aeration time was varied in the values ​​of 30, 60, 90, 120, 150, 180, 210 and 240 minutes. 64 treatments were carried out, with 3 repetitions each, reporting the average values ​​of the sulfide removal percentage. The response surface methodology was used to adjust the correlation of the variables to a quadratic model; Likewise, through contour graphs the regions with the highest percentage of sulfide removal were easily identified and by superimposing contour graphs the optimal ranges of the variables pH and aeration time were determined for removal percentages greater than 98%. Based on this evaluation, it is proposed for treatments with manganese dioxide, aeration times between 160 to 240 min and pH between 8.5 to 9 and for treatments with manganese sulfate, aeration times between 110 to 240 min and pH between 8.5 to 9.8. The coefficients of multiple determination R2 for the models with catalyst MnO2 and MnSO4 were 97.51% and 95.12% respectively. With the MnSO4 catalyst, higher removal percentages were achieved at a shorter aeration time, compared to the treatments carried out with the MnO2 catalyst.

Downloads

Download data is not yet available.

References

Ahmad, N. W. 2009. Remediation of sulfidic wastewater by catalytic oxidation with hydrogen peroxide. Journal of Environmental Science. 21(12): 1735-1740. doi: https://doi.org/10.1016/S1001-0742(08)62481-X

Caliari, P.C., Pacheco, M. J., Ciríaco, L., Lopes, A. 2019. Tannery wastewater: Organic load and sulfide removal dynamics by electrochemical oxidation at different anode materials. Environmental Technology & Innovative. 14. doi:https://doi.org/10.1016/j.eti.2019.100345.

Cunha, I. T., Teixeira, I. F., Albuquerque, A. S., Ardisson, J. D., Macedo, W. A., Oliveira, H. S., et al. 2016. Catalytic oxidation of aqueous sulfide in the presence of ferrites (MFe2O4, M = Fe, Cu, Co). Catalysis Today, 259(1); 222-227. https://doi.org/10.1016/j.cattod.2015.07.023

Guzmán, K., Luján, M. 2010. Reducción de emisiones de la etapa de pelambre en el proceso de curtido de pieles. Acta Nova, 4 (4), pp. 464-492.

Herszage, J., Dos Santos Alfonso, M. 2003. Mechanism of Hydrogen Sulfide Oxidation by Manganese (IV) Oxide in Aqueous Solutions. Langmuir. 19(23): 9684–9692. https://doi.org/10.1021/la034016p.

Hong Le, N, Han, Y., Jung, H., Cho, J. 2019. Catalytic reaction system for rapid selective oxidation of alkyl sulphide. Journal of Hazardous Materials. 379. https://doi.org/10.1016/j.jhazmat.2019.120830.

Kothiyal, M., Kaur, M., Dhiman, A. A., 2016. Compartive Study on Removal Efficiency of Sulphide and Cod from the Tannery Effluents by Using Oxygen. International Journal of Environmental Research. 10(4): 525-530. 10.22059/IJER.2016.59681

Miao, L. W. 2018. Review on manganese dioxide for catalytic oxidation of airborne formaldehyde. Applied Surface Science. 441-453. https://doi.org/10.1016/j.apsusc.2018.10.031

Qiu. G. L. 2011. Oxidation behavior and kinetics of sulfide by synthesized manganese oxide minerals. Journal of Soils and Sediments. 11(8): 1323-1333.

Salas, G. 2005. Eliminación de sulfuros por oxidación en el tratamiento del agua residual de una curtiembre. Revista Peruana de Química e Ingeniería Química, 8(1): 49-54.

Selvaraj, H., Aravind, P., Sindhuja, H., Sundaram, M. 2019. Removal of sulfide and recycling of recovered product from tannery lime wastewater using photoassisted-electrochemical oxidation process. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2019.11.024.

Wilk, L. J., Ciechanowska, A., Kociolek, E. 2020. Removal of sulfides from water using a hybrid ion exchanger containing manganese(IV) oxide. Separation and Purification Technology. 231. https://doi.org/10.1016/j.seppur.2019.115882.

Downloads

Published

13-06-2021

How to Cite

Mendoza Bobadilla, J. L. ., Guerrero Escobedo, A. E. ., Moreno Eustaquio, W. ., Ponce Zavaleta, M. ., & Carbajo Arteaga, L. . (2021). Influence Modeling and optimization of sulphide removal by catalytic oxidation of tannery fur effluents [Modelamiento y optimización de la remoción de sulfuros por oxidación catalítica de efluentes de pelambre de curtiduría]. Journal of Energy &Amp; Environmental Sciences, 5(1), 20–28. https://doi.org/10.32829/eesj.v5i1.126